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Event-related functional magnetic resonance
imaging: modelling, inference and optimization

Oliver Josephs'® and Richard N. A. Henson'?

Wellcome Department of Cognitive Neurology, Institute of Neurology, 12 Queen Square, London WCIN 3BG, UK
2 Institute of Cognitive Neuroscience, University College London, 10 Queen Square, London WCIN 3BG, UK

Event-related functional magnetic resonance imaging is a recent and popular technique for detecting
haemodynamic responses to brief stimuli or events. However, the design of event-related experiments
requires careful consideration of numerous issues of measurement, modelling and inference. Here we
review these issues, with particular emphasis on the use of basis functions within a general linear model-
ling framework to model and make inferences about the haemodynamic response. With these models in
mind, we then consider how the properties of functional magnetic resonance imaging data determine the
optimal experimental design for a specific hypothesis, in terms of stimulus ordering and interstimulus
interval. Finally, we illustrate various event-related models with examples from recent studies.

Keywords: single trial; event-related fMRI; statistics; echo-planar MRI; BOLD contrast

1. INTRODUCTION

The term event-related functional magnetic resonance
imaging (efMRI) can be defined as the use of functional
magnetic resonance imaging (fMRI) to characterize and
detect transient haemodynamic responses to brief stimuli
or tasks. Event-related, or trial-based, measurement is
already standard in the field of electrophysiology, namely
stimulus-locked, event-related potentials (ERPs). In
contrast, efMRI is a relatively new technique. fMRI
measurements of the haemodynamic response are as
recent as those of DeYoe et al. (1992), and statistical
methods for detecting event-related responses are as
recent as those of Boynton et al. (1996). The method has
since proved popular: more than 91 published papers
have used the technique.

Here we review the technique. The stress is on the
statistical modelling techniques used to detect reliable
event-related responses. It is hoped that this will comple-
ment other review articles by Rosen et al. (1998) and
D’Esposito et al. (1999), which concentrate on the nature
of the event-related response and give examples of appli-
cations in cognitive neuroscience. However, we shall
recapitulate the advantages of the event-related approach
over previous methods (§2), and briefly outline the basics
of haemodynamic responses and their measurement (§3).
We shall then discuss the reliable detection of event-
related fMRI responses, which involves creating models
(§4) and using the models to make inferences (§5). We
shall then introduce two areas of current research: the
applications of random effect models in single subject
efMRI and the optimization of event-related experi-
mental designs (§6). Finally, we shall present several
recent neuroscientific applications that illustrate the
modelling techniques (§ 7).

*Author for correspondence (o.josephs@fil.ion.ucl.ac.uk).
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2. THE IMPORTANCE OF BEING EVENT RELATED

Previous methods of functional neuroimaging, such as
positron emission tomography (PET), have limited
temporal resolution, which precludes the imaging of all
but prolonged states of brain activity. Such state-based
designs were initially adopted for fMRI studies. However,
it did not take long before the greater sensitivity and
temporal resolution of fMRI, particularly at higher
magnetic field strengths, were used to allow the more
flexible, event-related approach.

(a) Trial-based designs

The cardinal advantage of efMRI over state-related
fMRI is that it allows trial-based rather than block-based
experiments. Trial-based experiments offer several advan-
tages.

(1) The order of trials can be randomized, meaning that
the response to a trial is neither confounded by a
subject’s cognitive set nor systematically influenced
by previous trials (Johnson et al. (1997), for example,
showed that ERPs differed depending on whether
stimuli were randomized or blocked).

(1) Trials can be individually categorized or parame-
trized post hoc according to a subject’s performance,
as indexed by accuracy or reaction time for example
(see, for example, Wagner et al. 1998).

(ii1) Some experiments involve events that cannot be
blocked, such as ‘oddball’ paradigms, in which the
event of interest is a stimulus that violates the
prevailing context (B. A. Strange, R. N. A. Henson,
K. J. Iriston and R. J. Dolan, unpublished data).

(iv) Some events can occur unpredictably, and can be
indicated only by the subject (such as spontaneous
transitions in the perception of ambiguous figures
(see, for example, Kleinschmidt ez al. 1998).

© 1999 The Royal Society
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(v) Trial-based fMRI results are more directly compar-
able with other trial-based neuroscientific methods
(for example, ERPs and reaction-time measure-
ments).

(b) Block-based designs

Not only do event-related techniques make trial-based
experiments feasible but, more generally, they provide
improved methods for analysing other forms of fMRI
experiment. For example, from an event-related perspec-
tive, a state can be modelled, to first order, as a contin-
uous train of events, each representing one trial within
the block. If the trials are relatively sparse within the
block, the event-related approach can account for fluctua-
tion of the response within the block. This means that the
experimental variance is likely to be better modelled than
with a simple state-based approach (Price 1999). Another
example is when a state has variance associated with the
event of entering the state, an early effect (Iriston et al.
1995a). This can simply be treated by modelling an
additional event representing the beginning of the block
in addition to the state-related variance.

3. MEASURING EVENT-RELATED RESPONSES

In this section, we briefly examine the nature of the
event-related haemodynamic response and its measure-
ment using echo-planar magnetic resonance imaging
(EPI). The fMRI signal is caused by the (sluggish)
haemodynamic response after neuronal activation. The
biophysical mechanisms are not fully understood, but the
signal change is clearly a function of blood flow, volume
and oxygenation state (Howseman & Bowtell, this issue).
This blood oxygenation level dependent (BOLD) contrast
1s usually measured with 75-weighted gradient-recalled
EPI

(a) Variability in the response
The question arises of whether the BOLD response is a
reliable and consistent marker of neuronal activity.

(1) Temporal

Aguirre et al. (1998) examined the variability of the
BOLD response in the central sulcus during a simple
reaction-time task performed across scanning sessions
within a day, between days and between subjects. Varia-
bility across sessions within a day was significant for only
one subject. Significant variability across days was
observed in three out of four subjects (although, because
scanning across days entailed repositioning subjects in the
scanner, it was not possible to attribute this variability to
temporal fluctuations in BOLD response itself or to
differences in the scanning environment). Reproducibility
of state-related responses across multiple sessions in
several regions of interest has been demonstrated (McGo-
nigle 1999), although other brain regions showed signifi-
cant session—state interactions. These studies highlight
the risk of false-positive results when generalizing from
single sessions.

(i1) Spatial
Although a superficial comparison of responses

measured in motor cortex (see, for example, Aguirre et al.
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1998), visual cortex (see, for example, Boynton e/ al. 1996)
and auditory cortex (see, for example, Josephs et al. 1997)
suggests that the basic form of the BOLD response is
quite typical across the brain, one might expect
variability arising from differences in the blood supply to
different regions and the extent to which different
components of the venous compartment contribute to the
MRI signal. However, there are surprisingly few quanti-
tative studies of this spatial variability. Schacter et al.
(1997) found that responses in anterior prefrontal cortex
were best fitted by gamma functions that peaked 4 s later
than the functions that best fitted the responses in the
visual cortex. Although the vasculature of the two regions
does not differ markedly, it remains uncertain whether
this relatively delayed prefrontal BOLD response reflects
haemodynamic or neuronal effects. Clarification of this
issue requires the mapping of venous flow in different
brain regions (see, for example, Lee et al. 1995).

(i11) Individual

By far the largest source of variability observed by
Aguirre et al. (1998) was across subjects, presumably
reflecting considerable individual differences in physiology.
Physiological manipulations have been shown to offset the
BOLD response (Corfield et al. 1998), although in this case
they did not modulate the magnitude, relative to the base-
line, of responses evoked visually.

Thus preliminary studies suggest that the BOLD
response shows reasonable reproducibility across sessions
and brain regions within a subject, but significant varia-
bility across subjects. Further work is clearly needed: for
example, to quantify the extent to which this variability
affects the appropriateness of statistical models that assume
a single canonical form for the event-related response.
Models that use more general basis sets (§ 4(c)) are better
able to accommodate variability in the BOLD response.

(b) Linearity

The assumption that the magnitude of the BOLD
response is linearly related to the magnitude of under-
lying neuronal activity is useful in simplifying the model-
ling and detection of event-related responses. Various
studies (Boynton et al. 1996; Dale & Buckner 1997
Pollmann et al. 1998) have concluded that a reasonable
degree of linearity is to be expected, although this is
clearly not always true (Vasquez & Noll 1998), particu-
larly for short interstimulus intervals (Iriston et al. 19985).
Work is needed to correlate these effects with electro-
physiological investigations to discover which nonlinear
effects occur at the neuronal level and which occur at the
haemodynamic level. Some manifestations of nonlinearity
might include the following.

(1) Saturation

Whereas the PET response seems to increase linearly
with stimulus intensity, the fMRI response seems to
saturate at high levels (Howseman & Bowtell, this issue).

(i1) Habituation

The response to a trial might depend on the history of
previous trials, over and above the linear superposition of
previous responses. ERPs to rapid tone presentations, for
example, are attenuated at short interstimulus intervals,
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presumably owing to habituation of the cells in the audi-
tory cortex. This form of habituation is also likely to be
reflected by the haemodynamic responses measured in
efMRI.

(iii) Slew limits

Slew limits are effectively the maximum rate at which
the response can change. It might be that the haemo-
dynamic system can reach a final level that depends line-
arly on the applied stimulus, but can only reach that level
at a certain rate.

From the perspective of modelling, however, we can
remain agonistic on the question of linearity. We shall
demonstrate in § 4 that, even if the linear assumptions are
violated, we simply expand our models to include nonlinear
terms and proceed to make statistical inferences on the
basis of the linear or nonlinear component of the response.

(c) Whole-brain EPI measurement

fMRI data are usually acquired by using EPI, which is
fast relative to other MRI imaging procedures: a single
slice can be measured in less than 100 ms. For single-slice
studies this temporal resolution is sufficient to sample
event-related haemodynamic responses, the spectral
power density of which falls rapidly above 0.1Hz (see
figure la). However, a multi-slice scan of the whole brain
at reasonable spatial resolution, which is necessary for
many experiments, entails a volume repeat time (TR) of
several seconds, depending on the number of slices. Thus
the measurement of a haemodynamic response can often
undersample the experimental variance. One method to
overcome this problem is to stagger stimulus times
relative to scan acquisition times, realizing a higher
effective sampling rate (Josephs et al. 1997).

(d) Noise sources

Event-related responses are not recorded in isolation,
but rather in the context of various non-deterministic
confounding effects. These include instrument noise,
pulsatile physiological noise due to cardiac and respira-
tory rhythms, endogenous haemodynamic fluctuations
and residual effects of subject movement (motion effects
can persist even after image realignment, because of the
non-rigid body nature of the multi-slice imaging). These
noise sources dominate at low frequencies, having a 1/f
form (Aguirre et al. 1997; Zarahn et al. 19975). The noise
can be removed by high-pass filtering during preproces-
sing or modelling (§5(b)) (Holmes et al. 1997).

4. MODELLING EVENT-RELATED RESPONSES

In § 3 we summarized the nature of the haemodynamic
response to brief stimuli and the means by which we can
measure it with MRI. In this section we explain how,
armed with this knowledge, we can predict the forms of
variance that we expect to measure in an event-related
experiment.

Several early event-related studies did not model the
BOLD response explicitly, but implicitly allowed for
haemodynamic lag by equating the event-related response
to the signal measured in scans acquired 4—6s after the
stimulus (McCarthy et al. 1996). By synchronizing stimuli
with scan onsets and employing long interstimulus

Phil. Trans. R. Soc. Lond. B (1999)

intervals, time-courses can be plotted over peristimulus
scans (see, for example, Cohen et al. 1997). However, a
more powerful technique is to model the predicted time-
course of the fMRI signal (Friston e al. 1995a; Josephs et
al. 1997). Below, we describe the generation of a model
from component models of the stimulus, neuronal activity
and haemodynamic response.

(a) The general linear model

We formulate models within a general linear model
(GLM) framework. By following this approach we can
vary the complexity of the model to include higher-order
effects such as differential activation, interactions with
state or time, and even (linear approximations to)
nonlinear effects (§5(f)). In addition, we can account for
the temporal covariance structure of fMRI data.

In a GLM, we assume that the observed data can be
expressed as a linear combination of explanatory vari-
ables plus an error term. In matrix notation,

y=XB+e, (1)

where y is a vector of the measured results (a time-series
sampled every scan), X is the design matrix, in which
each column represents one explanatory time-course
(covariate), B is a vector of weights or parameters for
each covariate, and e is a residual error term with zero
mean and covariance V. A least-squares solution, 3’ for 3
in such a model is

B = pinv(X inv(7) X)X inv(V) p,

which, for independent, identically distributed residuals,
reduces to

B = pinv(X"X)X"y.

Thus an important assumption in the analysis of time-
series 1s that the residuals are white, that is they depend
only on the number of degrees of freedom (in fact, the noise
is often coloured owing to serial autocorrelations in the
time-series, which requires corrections to the degrees of
freedom; see Worsley & Friston (19935) for a complete
description). Under the null hypothesis, the model is also
expected to model variance depending only on the number
of degrees of freedom (covariates) in the model (§ 5(d)).

(b) Stimulus model

We assume that the stimulus or task can be characterized
by a multivariate function of time, s(¢), that has one dimen-
sion per experimental factor 1, ..., n. Values of s(t) =0
denote the baseline (no stimulus being applied). The occur-
rence of a brief stimulus or task is modelled as a Kroneker
delta function. This model can also account for state
changes (e.g. a block of stimulation) with appropriate ‘top-
hat’ functions. The resolved magnitude of s(f) can be set
arbitrarily to 1, to act as an indicator representing the
presence of a categorical factor, or to a value representing
the instantaneous magnitude of a parametric factor.

(c) Neuronal activation model
The neuronal activation to stimulation, u(), can be
expressed as a function of s(f):

u(t) = ¢ls()} + e (1),
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Figure 1. (a) EHRF in time (s) and frequency (Hz) domains after temporal smoothing with a FWHM Gaussian kernel of 4 s

and filtering with an ideal high-pass cut-off of 1/60s. (b) Sequence from a simulation of the predicted signal energy per scan
(bottom plot) after convolving a differential stimulus function (top plot) with a canonical HRF at a resolution of 0.1s (second
plot), sampling every TR of 1s (third plot), smoothing with a FWHM Gaussian kernel of 4 s (fourth plot), and high-pass filtering
to 1/60s (fifth plot). The smoothing and filtering stages are separated (rather than being convolved with the EHRF in (a)) to
illustrate their effects separately.
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where ¢,(f) represents spontaneous neuronal activity. In
general, the function ¢ is nonlinear but we can expand it
as a power series,

u(t)y=s"b+s'Bs+...+elt), (2)

where b is a vector of n linear coeflicients and the sym-
metrical #nxn matrix B contains quadratic coefficients.
The diagonal components of B represent nonlinear
influences of a given factor on neuronal activity (e.g.
saturation of receptors at high levels of stimulation). The
off-diagonal terms encode interactions between factors
(e.g. Bjg=DBy, represents an interaction between factor 1
and factor 2).

(d) Haemodynamic response model

We know that the haemodynamic response caused by
neuronal activation lasts for a finite duration after the
event. This is equivalent to observing that a given
measurement 1s influenced only by neuronal activation
that occurred within an equal, finite period before the
measurement. This restricted temporal influence on a
scan can be expressed by a finite memory model. With the
use of a discrete-time formulation (for notational simpli-
city), the finite memory model can be expressed as

(1) = 0fm(t)} + e, (1),

where the 7-dimensional vector w(¢) = [u(¢)u(t —1)...
u{t — (T — 1)}] represents the neuronal activation at time
¢t to a memory depth of 7, and e, (f) represents measure-
ment noise at time £ In general, § is a nonlinear function
but it can be expanded as a Volterra series (Friston et al.

19985),
y)=u'h+u"Hu+ ... +e,(1), (3)

where h is the linear convolution term and H is a Tx T
matrix of second-order coefficients. The nonlinearity
coded by H includes the saturation of the BOLD response
to neuronal activation.

We assume that A can be expressed as a linear combi-
nation of ¢ =1,...p temporal basis functions, g;{¢). In
discrete-time matrix form,

h=ag +ayg +...tag.

In a similar manner, we assume that H can be expressed
as the linear combination of j=1...¢ second-order basis
functions, G;():

H=A4,G +4,G, + ...+ 4,G,.

In the general case, we cannot separately estimate the
neuronal and haemodynamic parameters implicit in
equation (3), given only the stimulus model as input and
the data as output. For example, we cannot distinguish
between saturation at the neuronal level (the on-diagonal
terms of B in equation (2)) and saturation at the haemo-
dynamic level (the terms of H in equation (3)). Nonethe-
less, other parameters (such as the off-diagonal terms of
B that capture interactions between types of event) can
be estimated, at least to a proportional level, which
suffices for inferences by means of a variance ratio (F-test;
§5(c)). Moreover, this general framework permits the
derivation of simpler models by following additional

Phil. Trans. R. Soc. Lond. B (1999)

assumptions, such as linearity at the neuronal or haemo-
dynamic levels, as illustrated by the examples in § 4(f).

(e) Measurement model

The high-resolution discrete-time model in equation
(3) 1s sampled every TR, such that the predicted MRI
signal is y(mTy), where T 1s the scan repetition time and
m 1s the scan number. The model (and data) can also be
smoothed temporally to swamp intrinsic autocorrelation
in the data with a known autocorrelation (Worsley &
Friston 1995).

(f) Examples

We now consider two special cases of the above model
and demonstrate the GLM form for the measured time-
course that ensues.

(1) Unwvariate indicator stimulus _function

Here we assume that only one stimulus type is
presented (n=1), its intensity is constant, and neuronally
generated noise is negligible () =0). With these simplifi-
cations there are no interactions between event types and
no nonlinearity in the neuronal activity, because only two
values of neuronal activity are generated. Thus the
neuronal activation model is

u(t) = bs(t)
and the recent history of the neuronal activation is
u(t) = bs(1),

where s(¢) is formed by analogy with u(f) above. This can
be substituted into the haemodynamic response model,

9(t) =bs"h+0*s"Hs + ...+ e, (1),
and substituting for A and H yields
»(t) =abs'g, +abs'g, + ...+ apbsTgP +4,b°s"G,s
+ Ayb*s Gys + ...+ AqbQSVIVGqs + e, (1).
This is a GLM for » with (p+¢) unknown parameters
comprising neuronal and haemodynamic variables of the

known function (event train) and known
temporal basis functions (compare equation (1)).

stimulus

(1) Linear haemodynamic response

We now consider the case for n stimulus factors and for
which the haemodynamic response is linear (//=0). For
simplicity we again neglect the neuronal noise term, e ().
In this case, u(f) is a vector containing 7 elements, each of
which is the sum of n+% n(n+1) terms:

u(t) = S"b+ 5" Bs,
where S is an N x T matrix, and thus
J)=abisig +abys;g +...+ alesngQ +..
+ apbns;{g;} +... @B (1)sig + aBys(1)si g,
+ s +a2B1151 (t)svlrgQ + e +aﬂBnnsn(t)s;zrgﬁ—kem(t)'
The resulting GLM  has  p{nt,nf+1)}=pn; @+3)
unknown parameters. Thus in a two-factor experiment

modelled by three linear basis functions, the model would
contain 15 covariates: six to model the two main effects,
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six to model nonlinearity in the factors, and three to
model the interaction.

(g) Haemodynamic response function

We now turn to examine the choice of basis functions,
&:(t). These can be either direct expansions of time or
expansions of a prior estimate of a typical haemodynamic
response function (HRF). An example of the former
approach 1s the use of Fourier series components to esti-
mate the full effective sampling-rate-limited component
of the response (Josephs et al. 1997). Tor the latter
approach, we typically employ a multivariate Taylor
expansion of a gamma-function approximation to a cano-
nical HRF (Triston et al. 19984). The higher-order basis
functions in this expansion include the partial derivatives
of the HRF with respect to time and dispersion. The
Fourier basis set has the advantage of generality and
insensitivity to slice timing (§4(h)), whereas the partial
derivatives of a canonical HRF have the advantage that
the parameter for each covariate is interpretable in terms
of response magnitude, latency or duration (§5(f)(iv)
and § 7(f)). The canonical form and its derivatives can be
tested separately by means of univariate tests, whereas
the Fourier components are best tested by reduced F-tests

(§5(d)).

(h) Slice-timing issues

A single model is often assumed for all voxels (i.e. scan-
based or volume-based design matrices). At present,
however, whole-brain EPI acquisitions (§3(c)) require a
time comparable to the haemodynamic rise time,
meaning that different slices are acquired at different
times relative to the response. This can be partly
corrected for by temporal interpolation. However,
interpolation is not ideal, particularly if significant
experimental power exists at frequencies above the
Nyquist sampling limit (2TR)~". Alternatively, slice-
timing differences can be accommodated by a suitable
choice of basis functions, such as the phase-invariant
Fourier set, or the inclusion of temporal derivatives
(Henson et al. 1999). However, the most general solution
is to construct separate models for each slice that take
into account their acquisition time relative to the stimulus
(1.e. slice-based design matrices).

5. INFERENCE IN efMRlI

Having constructed a model for the event-related
variance, we now discuss the estimation of the parameters
required to fit the model to the data and methods for
performing statistical inference with the use of the para-
meter and residual variance estimates. The questions that
can be addressed mirror the models that have been used.
We consider only inferences at the level of individual
voxels (for issues regarding whole-brain inferences, see
Triston et al. (19955)). Inference involves the use of resi-
dual variance estimates to determine the distribution of
the parameter estimates for effects of interest under the
null hypothesis, and hence the probability of falsely
rejecting the null hypothesis (the significance), assuming
the null hypothesis to be true.

We could, in principle, test for activation by following a
single event-related trial. However, this is unlikely to

Phil. Trans. R. Soc. Lond. B (1999)

suffice because the event-related response is contaminated
by at least two sources of error. First, instrument noise is
typically quite high (although much lower than in PET).
Ratios of 2 or 3 for signal to (r.m.s) noise are typical,
and so any activation will only be detected with a low
significance. Higher field systems, with higher sample
magnetization, might allow the detection of the event-
related response to single trials (Richter et al. 1997).
Second, even though the sensitivity to detect the haemo-
dynamic response is high, the underlying brain response
itself often has a random component. One reason is that
the brain region in question might have functions unre-
lated to the task under investigation. Furthermore,
subjects might vary their strategy from trial to trial,
yielding a random, experimentally induced variance
component. For this reason one wishes to detect a typical
rather than a single response. The question therefore
becomes ‘Which voxels consistently show an event-related
response?” However, we begin by discussing the concepts
of confounds, parameter estimation, and contrasts.

(a) Confounds

We routinely model several confounding effects when
analysing fMRI data. These effects include the mean over
time, all low frequencies up to some cut-off point (typi-
cally 60s), to remove low-frequency noise (§3(d)), and a
global mean effect over space (i.e. all voxels). The impor-
tant point with respect to efMRI is that the experimental
variance is predominantly of a relatively high frequency
compared with a state-related design. This allows us to
apply a higher cut-off to the high-pass filter, removing
more of the low-frequency effects that would otherwise
reduce sensitivity.

(b) Estimation of parameters and residual variance
Our statistical inference uses an analysis of covariance
procedure. We need to discover the parameter estimates
for the linear components of the full model and, in
addition, the residual variance accounting for (i) the
confounds only (the reduced model (Buechel et al. 1996)),
and (ii) both the effects of interest and the confounds.
The purpose of the reduced model is to estimate the resi-
dual variance and degrees of freedom when accounting
only for the confounding effects, which can be used in an

I~-test of significance (§5(d)).

(c) Contrasts

In many cases we wish to test specific, a prior: hypotheses
about differences between two or more types of event.
Such contrasts (Friston et al. 19956) are linear combina-
tions of event-related effects, specified as vectors of weights
for each event type. The significance of these contrasts can
be indexed by ¢-tests (§5(d)). We can incorporate these
contrasts into the model by multiplying the design matrix
X by a matrix C containing each contrast. This rotation
produces a new model, X', in which each column is a
linear combination of columns from X, with weightings
according to the appropriate row (contrast) from C.

(d) Fixed-effects inference

Event-related inference can be performed within the
GLM by two types of significance test: Student’s ¢-test
and Fisher’s F-test. In both cases we use the results of
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fitting the full GLM. For the F-test we additionally fit the
reduced model (§5(c)).

The ¢test is used when we wish to determine the
significance of a particular contrast. By comparing the
parameter estimate against a ¢-distribution, we deter-
mine a significance level for the contrast. For the F-test
we do not refer to the parameter estimates but rather the
ratio of error variances obtained from the full and the
reduced models. Under the null hypothesis, this ratio is
expected to follow an F-distribution with D—N and
D —(N—M) degrees of freedom, where D is the number
of degrees of freedom in the data, N is the degrees of
freedom 1in the complete model and M is the degrees of
freedom in the confounds. For independent residual
error variance, the degrees of freedom in the data equal
the number of scans (for temporally smoothed data, the
effective degrees of freedom are less than the number of
scans (Worsely & Triston 1995)). For non-collinear
covariates, the degrees of freedom are the number of
covariates in the model.

The advantages of the ¢-test are that multiple tests can
be performed after fitting only one model and that the
direction of effects can be tested (e.g. an activation or
deactivation). The F-test is required when we wish to test
for the combined significance of a multiple-component
model (e.g. with multiple basis functions). With a single
component, the F-value obtained in an F-test equals the
square of the f~value from an equivalent ¢-test.

(e) Inference about a single type of event

The question asked here is ‘Did the voxel respond to
the stimulus?” This is the simplest hypothesis, in which
we attempt to disprove the null hypothesis that no event-
related activation occurred. Under the null hypothesis the
variance in the subspace of the model due to the event
would be expected to depend only on the degrees of
freedom in the model relative to the degrees of freedom in
the data. The ratio of these modelled-to-residual
variances allows an F-test of the significance of the activa-
tion. In the context of confounding effects, the F-ratio
can be formed between the extra variance accounted for
by the effects of interest relative to the residuals from the
full model (Buechel et al. 1996).

In some designs, the response of interest is that to a
single event in the context of background events of no
interest. An example of this design is an ‘oddball’ para-
digm, in which the event of interest is a stimulus that
deviates from surrounding context events. For example,
low-pitched tones might be presented rapidly with occa-
sional high-pitched tones. If the context events are
presented rapidly enough (relative to the time constants
of the HRF), they can be treated as a raised baseline, for
which we assume that a tonic haemodynamic state is
reached with respect to the common effect (of tones). If
the interval between effects of interest (high tones) is
sufficiently long, we can detect a significant event-related
effect superimposed on this baseline (assuming linearity).
If context events are not presented rapidly enough for a
tonic state to be reached, they may need to be modelled
explicitly as confounds (otherwise the assumption that
residual noise 1s white might be compromised, and type I
errors can arise 1if the associated variance is misattributed
to the effect of interest).

Phil. Trans. R. Soc. Lond. B (1999)

(f) Inference about multiple types of event

Here we are interested in the differential effects of two
or more event types. We construct an N XM column
design matrix of N event types and M basis functions
that spans the space of experimental variance. We can
now rotate the model (§5(c)) to form a design matrix
comprising linear combinations of the original covariates.
Under certain useful rotations, this rotated model is
equivalent to the original model but the fitted parameter
estimates can be more directly interpretable. Note that if
events of each type are close together in time and not
completely randomized in order (such that the covariates
for the different event types are correlated), then some of
the experimental variance due to one event type might be
inappropriately modelled by the other event types,
resulting in a loss of sensitivity to detect responses to each
event type (a type II error).

(1) Duyfferential responses

An example rotation for two trial types is to form
the sum and difference between the two responses to
(note that the sum of two event-type covariates, 4+B,
is orthogonal to the difference, 4 —B). These partitions
of the model can be interpreted as accounting for the
mean (common) activation and the differential
activation.

(11) Factorial responses

One can extend the idea of modelling commonalties
and differences to more general factorial experiments. For
example, the model for a two-factor, two-level experi-
ment comprises four partitions, one for each event type.
This model can be rotated to represent, for example, the
common effect of a trial, the two main effects and an
interaction term.

(ii1) Parametric responses

The levels of a given factor can be continuous rather
than discrete. In this case the model for the response
magnitude (s() in §4(b)) depends on the level of the
factor. Alternatively, the response magnitude might be
determined post hoc by behavioural measures (e.g.
galvanic skin response) that are associated with each
trial.

(1v) Response parameters

The components of some basis sets can have different
interpretations, and it can therefore be useful to test
them separately. The use of a canonical HRF and its
derivatives with respect to time and dispersion, for
example, allows separate -tests of differences in magni-
tude, latency and duration of event-related responses
(Friston el al. 19984). Latency differences can then be
compared with psychophysical differences, such as reac-
tion-time differences. Note, however, that the dispersion
derivative is not orthogonal to the canonical form, and
although the temporal derivative is orthogonal to the
canonical form, this orthogonality will not remain if the
model and data are undersampled. Thus, strictly inde-
pendent tests of latency or duration differences can
require explicit orthogonalization of the sampled deriva-
tive and dispersion covariates with respect to the
sampled canonical form.
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(g) Non-stationary reponses

The event-related response, or derived effects, can
adapt to (interact with) other factors. Whereas the non-
linearities described in § 3(b) can be interpreted as inter-
actions between (typically) adjacent event-related
responses, non-stationary responses can be regarded as
the interaction of other parameters. For example, the
response can depend on the task (e.g. the context of a
trial), the subject (e.g. the level of arousal), or simply the
time during the experiment. Such interactions can be
modelled as the product of the parameter and the event-
related effect. A particularly interesting case arises when
the non-stationarity of a response can be engineered to be
orthogonal to stationary components. For example, the
variance in a trial of varying duration can be modelled in
terms of constant components due to the beginning and
end of the trial and a varying component depending on
the duration of the trial.

(h) Randome-effect inference

So far we have assumed that event-related responses
are fixed effects; that 1s, neglecting possible non-
stationarity and nonlinearity, the neuronal response from
trial to trial can be considered constant. In many cases,
however, the actual event-related responses are in fact
random effects, i.e. they are themselves drawn from a
distribution of possible values. The appropriate null
hypothesis is no longer that there is no activation in the
experiment but rather that there is no consistent activa-
tion in the population of trials from which the present
experiment sampled. In this section we consider how
including, or failing to include, a random-response
component affects the statistical inference drawn from
experiments. Much of this discussion reflects the issues
raised by Petersson et al. (this issue) on multiple-subject
inferences (see also Holmes & Friston 1998) (Strange et al.
1999).

We consider a hypothetical differential event-related
experiment in which the neuronal response varies
randomly from trial to trial. We assume that there is in
fact no systematic differential activation between trials
(1.e. the responses are drawn from the same population
distribution with zero mean but non-zero standard devia-
tion), and that the instrument noise is white.

A fixed-effect model for this experiment is the convolu-
tion of a delta-function sequence by an HRF. Fitting this
model to the data can result in a small but non-zero para-
meter estimate. Crucially, however, the residual variance
1s non-white (confounding variability between responses
with variability between scans), violating the assumption
required to use the residual variance in setting the appro-
priate significance thresholds. A random-effect model
treats each trial separately, in its own partition of the
design matrix, meaning that residuals are more likely to
be white. To test for the differential effect, the parameter
estimates from each trial are taken to a second level of
inference, in which their distributions are compared
directly. These two stages effectively separate inter-scan
and inter-response variability.

An additional advantage of the random-effect model is
that, under the null hypothesis, the parameter estimates
are likely to be less correlated and hence not require
corrections for autocorrelation (§5(d)) (although there is

Phil. Trans. R. Soc. Lond. B (1999)

no reason why such corrections could not be applied
across trials when significant autocorrelation does exist).
One problem with separate partitions of the design
matrix for each trial is that several degrees of freedom
might be required to obtain an accurate estimation of
response parameters. This implies several scans per event,
with a TR short enough to sample the haemodynamic
response sufficiently, and relatively long interstimulus
intervals. As shown below, however, long interstimulus
intervals are non-optimal for most designs.

6. OPTIMIZATION OF EVENT-RELATED
EXPERIMENTAL DESIGNS

In this section we shall discuss the optimization of
event-related experimental designs, which is an area of
much current interest. Optimization involves maximizing
the sensitivity (signal:noise ratio) for particular contrasts
(hypotheses) as a function of the stimulus ordering and
stimulus onset asynchrony (SOA). For simplicity we
assume the noise to be invariant across changes in
ordering or SOA, and concentrate on maximizing the
signal. We begin by introducing several concepts that are
useful in characterizing the space of experimental
designs.

(a) Some definitions
(1) Stimulus transition matrices

An event-related experiment is fully determined by the
SOA and a transition matrix. For N different event types,
the N x N transition matrix, 7, details the probability of
a given event type (in the columns of 7) conditional on
the previous m event types (the rows of 7). Table 1 shows
a first-order (m=1) transition matrix for two randomly
ordered event types, A and B (1), a first-order transition
matrix for two ordered (alternating) event types (2), and
a second-order (m=2) transition matrix for two
permuted event types (3). Note that the permuted
sequence 1s pseudo-randomized in the sense that it is
randomized up to first-order contingencies.

Deterministic designs are those in which the elements
of the transition matrix (the probabilities, p,, of each
event type e) are either O or 1. Stochastic designs (Heid et
al. 1997) are those in which p, <1, and a special case of
stochastic designs is fully randomized designs in which
p.=1/N for all event types e=1, ..., N. In most situa-
tions, a fully randomized design is desirable (for psycho-
logical reasons, for example). Some designs, however,
have an inherent non-random ordering (such as alter-
nating transitions between bistable perceptions; see, for
example, Kleinschmidt e al. 1998). As demonstrated
below, different event-type orderings are most sensitive
for a given contrast in different ranges of SOA.

Events can be varied in time as well as order. Such
designs can be realized by transition matrices in which
the rows sum to p=2%p,<l. In the fully randomized
design of Dale & Buckner (1997), for example, an addi-
tional null trial is introduced (when no event occurs),
such that p,=1/(N+1). The introduction of null trials is
equivalent to the stochastic selection of SOAs for the
trials of interest (see §6(c)). Stochastic designs can also be
stationary, where p, is constant over time, or dynamic,
where p, changes over time (K. ]J. Iriston, E. Zarahn,
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Table 1. Examples of (1) random, (2) alternating and (5)
permuted  ( pseudo-random)  sequences and their transition
matrices

sequence
type A B example
1 A 0.5 0.5

B 0.5 0.5 ABBABBBAAABA . ..
2 A 0 1

B 1 0 ABABABABABAB. ..
3 AA 0 1

AB 0.5 0.5 ABBABAABBABA. ..

BA 0.5 0.5

BB 1 0

O. Josephs, R. N. A. Henson and A. Dale, unpublished
data). An extreme example of a dynamic stochastic design
1s the blocked-trial activation—rest design, where p,
switches from 0 to I in each activation block. We concen-
trate on deterministic designs below, to illustrate impor-
tant concepts in the detection of event-related responses,
and consider stochastic designs later.

(i) Effective HRF

Although the HRF contains low-frequency compo-
nents, these components are likely to be contaminated
by noise due to subject motion and other long-term drift
effects (§3(d)). Its high-frequency components are also
redundant when data are smoothed to accommodate
temporal autocorrelation in the GLM (§4(e)). It is
therefore sensible to introduce the concept of the effec-
tive HRF (EHRF). The EHRF is simply the HRF
filtered by the band-pass filter comprising the high-pass
filter and the temporal smoothing required for statistical
inference. By considering this effective response, as
opposed to the actual response, we can visualize the
measurable component of the haemodynamic response to
neuronal activity.

Figure la shows the EHRF with the use of a canonical
HRF (§4(f)), a high-pass filter up to 60s, and Gaussian
smoothing with a full width at half maximum (FWHM)
kernel of 4s. The long side-lobes of the EHRF in the time
domain arise from our use of an ideal high-pass filter.
Since we are not interested in the time-course of the
haemodynamic responses itself, but rather the ability to
detect responses that reflect our experimental manipula-
tion, these long time-scale artefacts do not usually
concern us. However, this does provide a mechanism
whereby, if the model for the event-related response is
incomplete, power evoked by one event can ‘leak’ into a
region of time that is modelled by another event (an issue
that needs further exploration). The effect of temporal
smoothing can be seen in the attenuation of the high-
frequency components in the frequency domain. The opti-
mization of an experimental design can then be viewed as
the maximization of experimental power under the
frequency profile of the EHRF.

(ii1) Inter-effect interval
For deterministic designs, it is the inter-effect interval

(IEI) that determines optimal sensitivity for a particular

Phil. Trans. R. Soc. Lond. B (1999)

contrast. The IEI is the time between repetitions of
event types with the same contrast weight. The IEI for a
simple difference between two alternating event types
(a [I—=1] contrast), for example, is twice the SOA, as is
the IEI for the interaction between four alternating
event types in a 2x2 factorial design (a [1—1-—11]
contrast), whereas the IEI for the main effect (a [11] or
[1111] contrast, respectively) is equal to the SOA. As
shown below, the optimal SOA for a given contrast in a
deterministic design 1is that with an experimental
frequency, 1/IEI, that is closest to the peak of the EHRF
power spectrum.

(iv) Estimated measurable power

The signal magnitude associated with a particular
contrast and a particular experimental design can be
indexed by the estimated measurable power (EMP). The
EMP can be simulated by taking the linear neuronal
model (§4(c)), multiplying by the contrast of interest,
convolving with the EHRF (again assuming linearity of
the haemodynamic response; §4(f)(i1)), sampling every
scan (TR) and calculating the total energy (sum of
squared signal across scans). The EMP is the total
energy divided by the number of scans (to normalize for
different experimental durations). Assuming that the
noise level is fixed (i.e. not influenced by the parameters
being varied), then the experimental design with the
highest EMP 1is likely to be the most sensitive for that
contrast. EMP is therefore proportional to the efficiency
of a design for a particular contrast, which is propor-
tional to the variance of a column in a design matrix
(K. J. Iriston, E. Zarahn, O. Josephs, R. N. A. Henson
and A. Dale, unpublished data). For multiple contrasts,
or contrasts involving multiple basis functions, the effi-
ciency of a design can be characterized by the trace of
the covariance of the contrasted design matrix. The
EMPs for single contrasts in some example designs are
discussed below.

(b) Simulated optimization

Figure 2 shows EMP as a function of SOA for the main
and differential effects in various orderings of two event
types. These simulations involved 10 000 events (to ensure
stable estimates for randomized designs), the EHRF
shown in figure la, and continuous sampling with a TR of
Is. We emphasize that resulting EMP is not necessarily
linearly related to sensitivity (for example the resulting /-
value)—we assume only that EMP is a monotonic index
of sensitivity—and that for SOAs of less than 2s (Friston
et al. 1998b), nonlinear (saturation) terms will prevent the
EMP from growing without limit.

Figure 2a shows sensitivity for the random, alter-
nating and permuted designs in table 1. Maximal sensi-
tivity to a differential effect (a [1—1] contrast) arises
with randomized designs and short SOAs. Maximal
sensitivity to a main effect (a [11] contrast) is of course
independent of stimulus ordering, and occurs with an
SOA of ca. 18s (i.e. with a dominant experimental
frequency close to that of the EHRF). Thus we immedi-
ately see that whether one’s hypothesis concerns a
differential effect or a main effect determines whether
one should use a short or a long SOA respectively (in
deterministic designs).
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Figure 2. Logarithm of the scaled EMP against SOA for the main effect (main effect, ME, solid lines) and differential effect
(differential effect, DE, broken lines) for two event types in () randomized, alternating and permuted designs (table 1),
(b) randomized designs with and without null events (§6(b)), and (¢) randomized designs and blocked designs of one

(alternating), two or four events.

At short SOAs, the main effect of two event types (the
constant component) is effectively a raised baseline that is
removed by the high-pass filter. For alternating designs,
the high-frequency components of the differential effect at
short SOAs are lost by the temporal smoothing inherent
in the HRF and smoothing kernel. For randomized
designs, the differential effect is actually enhanced at
short SOAs through the summation of overlapping HRFs
(see, for example, Burock et al. 1998). In fact, the
maximum energy for such rapid, randomized designs
actually occurs in the scans after runs of the same event
type (see figure 16 and §6(d)).

At intermediate SOAs between 6 and 25, the optimal
design for a differential effect i1s an alternating or
permuted design. With such designs, the optimal SOA is
ca. 9s, giving an IEI (twice the SOA; §6(a)(iil)) that is
close to the dominant components of the EHRF. More
generally, the optimal SOA for a given contrast in an
alternating design is that with an IEI close to 18s (with
the present parametrization of high-pass and low-pass
filtering). Thus the optimal SOA for a pairwise difference
between two of four alternating event types (a simple
effect, or a [1—100] contrast) would be ca. 4.5s. The
decreased sensitivity of randomized designs in these inter-
mediate SOA regimes
components resulting from long runs of an event type are
attenuated by the high-pass filter. An alternating

arises because low-frequency

Phil. Trans. R. Soc. Lond. B (1999)

sequence might not, of course, be appropriate for psycho-
logical considerations, so a permuted design, which has a
similar sensitivity profile but is randomized to first order,
might be a good compromise.

Figure 26 shows the sensitivity for a design suggested
by Dale & Buckner (1997). This fully randomized design
involves a third null event, in which no stimulus occurs
(1.e. the two event types are effectively randomized in
time as well as order). If null events are treated as a third
event type, main and differential effects can be simulated
by [110] and [1 —10] contrasts, respectively. This design
affords improved sensitivity to the main effect even at
short SOAs. Thus, although this design is non-optimal for
differential contrasts, relative to a randomized design
with only two event types, it is a good design for
retaining sensitivity to both main and differential effects
at short SOAs.

Figure 2¢ shows the sensitivity of short, blocked
designs, with alternating blocks of one, two or four events
of each type. These blocked designs are more sensitive
than the randomized design at short SOAs, particularly
as block length increases (at least until the frequency of
block alternation approaches the high-pass cut-off
(Hutton et al. 1998)). Again, this is because, under the
linearity assumption, responses to events of the same type
are summed, concentrating power at the block alternation
frequency.
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(c) Analytical optimization

Many of the simulated results in the previous section
can be confirmed by analytical methods. Friston et al.
(K. J. Friston, E. Zarahn, O. Josephs, R. N. A. Henson
and A. Dale, unpublished data), for example, character-
ized the sensitivity to responses of a single event type as a
function of the minimal SOA, SOA,;, and the prob-
ability, p, of an event occurrence every SOA,_;,. Under
the linearity assumption, optimal sensitivity occurs in a
stationary stochastic design with p=0.5 and minimal
SOA ;.- Thus, contrary to the deterministic cases consid-
ered above, long SOAs are not necessary to measure
main effects if stochastic designs are employed: the
random jitter’ in time introduces lower-frequency compo-
nents that survive smoothing, much like the Dale—
Buckner null events in figure 24. Future investigation of
event-related optimization will need to parameterize and
quantify the influence of nonlinear components of
neuronal and haemodynamic responses on sensitivity,
particularly for short SOAs and for variable durations of
events.

(d) Interpretation in rapid, randomized designs

Figure 16 shows a section of the simulated signal in a
differential contrast with a randomized design and an
SOA of 2s. The bottom plot, showing the instantaneous
power at each scan point, illustrates that, at short SOAs,
runs of events of the same type generate large amounts of
energy. Conversely, periods of alternating event types
produce minimal energy. This observation has implica-
tions for the interpretation of any significant differential
effect: any such effect is driven mainly by a difference
between responses to event type A and event type B in
the context of runs of A or B. In other words, we are left
with the same type of context-dependent interpretation
that is the lacuna of blocked designs. For example, if a
negative priming effect existed for the immediate repeti-
tion of event type A but not B (such that the response to
A diminished with immediate repetition), the finding of a
significant difference between event types A and B might
apply only to primed events, and there might not in fact
be any difference between unprimed event types A and B.
This is one reason why the greater EMP for short SOAs
might be sacrificed in favour of the clearer interpretation
afforded by longer SOAs in which haemodynamic overlap
is reduced.

7. EXAMPLE EVENT-RELATED EXPERIMENTAL
DESIGNS

Now that we have covered measurement, modelling,
inference and optimization, we can discuss how these tech-
niques have been used to address neuroscientific questions.

(a) Single event type

Josephs et al. (1997) used a Fourier basis set of 16
components up to 0.5Hz (§4(g)) to model the response
to words heard every 33s. An F-test revealed significant
activation in auditory and periauditory regions. Plots of
the event-related response peaked at 5-8s after the
stimulus, followed by an undershoot 10 and 255 after the
stimulus. Zarahn et al. (19974) used a set of time-shifted,
empirically derived HRFs to model responses during

Phil. Trans. R. Soc. Lond. B (1999)

experimental and control trials of a visuospatial working
memory task presented every 30s. Paired ¢-tests on indi-
vidual HRFs revealed significant activations in sensori-
motor and prefrontal regions associated with temporally
distinct perceptual, mnemonic and response components
of each experimental trial. Dale & Buckner (1997) used
gamma functions (parameterized by Boynton et al.
(1996)) to model the response to Is bursts of one, two or
three flickering visual chessboards. Significant activation
was observed in the primary visual cortex, with responses
within bursts summing linearly even for SOAs as short as
2. These examples illustrate the range of different model-
ling techniques that have been used to detect significant
event-related responses.

(b) Raised baseline

The two principal disadvantages of multiple-trial
experiments with a single event type relate to the predict-
ability of events and the lack of any high-level control.
The subject knows in advance what type of event they are
about to experience and a voxel might be activated not
because of the effect of interest (e.g. a word being
presented) but because the event is more salient, or atten-
tion-grabbing, than the inter-trial baseline. One might
even detect event-related deactivations in brain regions
that reflect, for example, a growing anticipation of an
event. A raised-baseline technique might suffice in some
cases (§5(e)). This form of experiment has been used
(R. Vandenberghe, O. Josephs, L. K. Tyler, C. J. Price,
R. Turner, R. S. J. Frackowiak and K. ]J. Friston, unpub-
lished data) when the event of interest was temporally
extended, comprising a short sequence of seven words
(lasting 3.85s) within a background sequence of conso-
nant letter strings presented every 550 ms. The prolonged
HRF was modelled with a Fourier basis set (§4(g)). As
expected, responses associated with word-processing were
identified in the left supramarginal, superior temporal
and Sylvian fissure regions (although these responses did
not seem to differentiate between meaningful sentences
and random word sequences).

A similar design has been used (B. A. Strange,
R. N. A. Henson, K. J. Friston and R. J. Dolan, unpub-
lished data) in which sequences of semantically related
neutral-context words were presented at a rate of one
word every 3s (to allow subjects to make a judgement
about each word). Three ‘oddball’ words were randomly
inserted into these sequences: a perceptual ‘oddball’ (a
word presented in a different font), a semantic ‘oddball’ (a
semantically unrelated word) and an emotional ‘oddball’
(a word with aversive emotional connotations). The
slower presentation rate in this case meant that a tonic
baseline might not have been reached, so context words
were explicitly modelled as confounds (§5(e)). Enhanced
responses relative to context words were identified in the
fusiform cortex for perceptual ‘oddballs’, in the left
prefrontal cortex for semantic ‘oddballs’, and in the amyg-
dala for emotional ‘oddballs’.

(c) Stmple differential response

Most event-related experiments use two or more event
types and are primarily interested in the differential
effect between event types (§5(f)(1)). A popular
design for differential effects is the rapid, randomized
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presentation with null events developed by Dale &
Buckner (1997). Buckner et al. (1998), for example, used
this design to examine object priming by comparing
responses to novel object pictures with responses to
previously studied pictures. Several brain regions,
including the extrastriate visual, inferior temporal and
left dorsal prefrontal cortices, showed reduced responses
to familiarized compared with novel pictures. One advan-
tage of this randomization scheme is that plots of the
differential response between each event type and fixation
(e.g. novel pictures compared with null events) can be
generated simply by selective averaging of the data
(although statistical tests of these differences remain best
achieved with temporal basis functions).

Wagner et al. (1998) reported another use of this design
to examine differential responses to words presented
visually as a function of whether or not the words were
subsequently remembered. Enhanced responses in the left
posterior prefrontal, parahippocampal and fusiform
cortices predicted which words were later recognized.
This experiment illustrates one of the important advan-
tages of event-related designs (§2(a)), namely the ability
to classify event types post hoc as a function of the
subject’s behaviour. However, one associated problem is to
ensure that the order of the subjectively classified event
types remains random (for example, the well-established
tendency for stimuli towards the start and end of study
lists to be better remembered might mean that remem-
bered events tend to co-occur early and late in the scan-
ning period).

Another example of a subjective classification of events
was reported by Henson e al. (1999a), in which subjects
indicated the nature of their conscious experience when
trying to remember words studied previously. Words that
produced a clear recollection of their study episode were
given a ‘remember’ (R) judgement, whereas words that
produced a feeling of familiarity in the absence of recoll-
ection were given a ‘know’ (K) judgement. R judgements
were associated with enhanced responses in left anterior
prefrontal and superior parietal cortices, whereas K
judgements were associated with enhanced responses in
right dorsal prefrontal and bilateral anterior cingulate
cortices. This study also effected a univariate random-
effects inference across subjects (§5(h)) by reducing
event-related responses to a single parameter (the height
of a canonical HRF). A final example of a differential
effect that can be indexed only by subjectively defined
events is illustrated by Kleinschmidt ez al. (1998), who
scanned subjects while they viewed perceptually bistable
figures. By comparing button presses made by subjects
when a percept was stable with button presses made when
the percept spontaneously reversed, these authors identi-
fied increased responses associated with reversals in the
ventral occipital and intraparietal cortex, and decreased
responses in the primary visual cortex and the pulvinar,
even though the wvisual stimulus remained constant
throughout. Event-related experiments such as these are
therefore beginning to identify the neural correlates of
different types of conscious experience.

(d) Factorial responses
Fewer studies have used factorial, event-related designs
(§5(f)(11)). One example is a study (R. N. A. Henson,

Phil. Trans. R. Soc. Lond. B (1999)

T. Shallice and R. J. Dolan, unpublished data) that exam-
ined the interaction between repetition priming within an
experimental context (as in Buckner ez al. (1998), discussed
above) and whether or not the stimulus was familiar
before the experiment. In one experiment, the interaction
was between first and second presentations of famous and
non-famous (unfamiliar) faces. A region in the right
lateral fusiform cortex showed a decreased response to the
repetition of famous faces, comparable to the results of
Buckner et al. (1998), but an increased response to the
repetition of non-famous faces. Furthermore, the same
region showed the same interaction in a second experi-
ment in which the stimuli were simple line-drawings that
were either familiar (symbols) or unfamiliar (rearranged
symbols). One possibility is that the enhanced response to
the repetition of unfamiliar stimuli in this region reflects
the formation of new stimulus representations.

(e) Parametric responses

In the study of repetition priming described above
(R. N. A. Henson, T. Shallice and R. J. Dolan, unpub-
lished data), the first and second presentations of familiar
and unfamiliar stimuli randomly intermixed
throughout the scanning period. This entailed a range of
lags (number of intervening stimuli) between the first
and second occurrence of a specific stimulus. The para-
metric effect of this repetition lag was examined by multi-
plying the event-related covariate for the second
occurrence of stimuli by its mean-corrected lag
(§5(f) (111)). Although the main effect of lag is confounded
by time (because larger lags are necessarily associated
with stimuli occurring towards the start and the end of
the scanning session), the interaction between lag and
stimulus familiarity is not (illustrating the value of
factorial designs; § 5(f) (i1)). The same region that showed
an interaction between face repetition and face famil-
iarity also showed a modulation by lag, such that the
response to the second presentation of famous faces
increased with lag, whereas the response to the second
presentation of a non-famous face decreased with lag.
This interaction suggests that both the repetition inhibi-
tion for famous faces and the repetition facilitation for
non-famous faces were short-lived.

were

(f) Response parameterization

The use of multiple basis functions can permit tests of
different aspects of the haemodynamic response. The use
of temporally shifted gamma functions, for example,
allowed Schacter et al. (1997) to differentiate between
carly- and late-onset HRFs, with the best-fitting function
for the anterior prefrontal cortex being delayed relative to
that for the visual cortex during a visual recognition task
(although this delay cannot be unequivocally attributed
to haemodynamic or neural differences; §3(a)(i1)). Less
equivocal latency differences in neuronal activity can be
inferred from differences between fitted responses for
event types within the same brain region. Friston et al.
(1998a), for example, illustrated how the use of a cano-
nical HRF and its first-order derivative with respect to
time allows one to test for differences in response latency.
The use of the derivative of a canonical HRF with
respect to its dispersion similarly allows one to test for
differences in response duration.
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The temporal derivative of a canonical HRF has been
used (Henson et al. 1999¢) to test for latency differences in
a lexical decision task. Regions that exhibited enhanced
responses to words relative to non-words (greater height
parameter estimates), including the left angular and left
inferior temporal cortex, also exhibited shorter latencies
(greater derivative parameter estimates). This could
reflect nonlinearities in the underlying haemodynamic
response (Vasquez & Noll 1998), such as the non-
independence of response magnitude and response onset,
or it could reflect a true difference in the onset of neural
activity after words and non-words.

Another advantage of using the derivative to test for
latency differences is that it provides an approximation to
the size of the latency difference. By comparison with the
first-order Taylor expansion of a haemodynamic function,

J),
S(t4de) = [ () ./ (t)dt,

where /' is the derivative of f with respect to time, the
parameter estimates b; and b, obtained from fitting a
canonical basis function g (f) and its temporal derivative

go(t) (§5(F) (1)),

J (1) 2 b1g () + bago(2),

allow an approximation of ¢ as
dt ~ by /b,

(assuming the canonical HRF fits well, i.e. ,>0). With
the use of this approximation, values of d¢ have been
found (Henson et al. 1999¢) that differed by ca. 0.3-3s in
brain regions that were differentially responsive to words
and non-words. Latencies of this size are likely to reflect
haemodynamic rather than neural differences (given that
reaction times were less than 1s for both word and non-
word decisions). This use of multiple basis functions is an
alternative to the nonlinear fitting of parametrized func-
tions, such as the delay and dispersion of a Gaussian
HRF (Krueggel & Von Cramon 1998).

(g) Non-stationary responses

An example of the analysis of non-stationary responses
1s provided by Buechel ez al. (1998), who sought to charac-
terize changes in event-related responses during aversive
conditioning of a neutral face (CS+) by a loud noise
(US). By using a partial reinforcement schedule, the main
events of interest were presentations of the CS+ in the
absence of the US (unpaired CS+ events). Covariates
sensitive to the learning of the CS—US contingency were
created by convolving the unpaired CS+ event trains
with a canonical HRF and multiplying by an exponen-
tially decreasing function of time. The only region
showing such a response—time interaction was the left
amygdala, suggesting that this structure shows adaptation
to the GS+ during conditioning.

This study also illustrates another advantage of event-
related designs: in previous conditioning studies, blocks
of CGS+ stimuli have been compared with blocks of GS —
stimuli (stimuli that are never followed by the US). To
avoid the confound of the US itself, however, these
studies have needed to present CS+ stimuli alone during
the scanning window. Unfortunately, this means that

Phil. Trans. R. Soc. Lond. B (1999)

CS+ responses are measured in the context of an extinc-
tion schedule, a confound explicitly acknowledged by
such studies (for example, Morris et al. 1998). Event-
related designs with a partial reinforcement schedule,
like that of Buechel et al. (1998), permit the separation of
intermixed trials of CS+ with the US, and CS+ without
the US.

(h) Responses as random effects

The modelling of event-related responses as random
effects is a relatively recent suggestion and is an impor-
tant consideration if the variability of effect size (e.g.
response magnitude) is large relative to the interscan
variability. This type of analysis has recently been applied
(Josephs & Iriston 1999) to epileptic spikes (triggered
between scans in a ‘burst-mode’ procedure (Josephs et al.
1999)), which is one situation in which a large inter-
response variability would seem likely. Several brain
regions showed a significant difference in the mean para-
meter estimate for spike events and the mean parameter
estimate for control events. We are currently investigating
the relative size of inter-response and interscan varia-
bility, to address design issues concerning the appropriate
number of events and scans for effective statistical power.

8. CONCLUSIONS

Having summarized the important advantages of
event-related designs and the measurement of event-
related haemodynamic responses with the use of echo-
planar fMRI, we have discussed current issues in the
modelling, inference and optimization of event-related
designs. Future development in the analysis of efMRI
would seem to require further investigation of (i) the
reproducibility of the haemodynamic response, especially
over different brain regions and different subjects (§3(a));
(i1) the degree of nonlinearity in the measured response,
which has particular relevance to the appropriate model-
ling of experimental variance (§4) and the optimization
of event-related designs with short SOAs (§6(c)); and
(i11) the appropriateness of modelling event-related
responses as random, rather than fixed, effects (§5(h)),
which has implications for the statistical power of experi-
mental designs.

This work was supported by the Wellcome Trust. We thank Karl
Friston for useful comments on an earlier draft.
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